1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
use std::sync::Arc;
use crate::{
hittable::{HitRecord, Hittable, AABB},
material::Material,
ray::Ray,
vec3::{Point3, Vec3},
};
pub struct Triangle {
pub v0: Point3,
pub v1: Point3,
pub v2: Point3,
pub material: Arc<dyn Material>,
pub custom_normal: Option<Vec3>,
}
impl Triangle {
fn has_vertex_at_infinity(&self) -> bool {
self.v0.has_infinite_member()
|| self.v1.has_infinite_member()
|| self.v2.has_infinite_member()
}
}
impl Hittable for Triangle {
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
fn hit(&self, ray: &Ray, t_min: f64, t_max: f64) -> Option<HitRecord> {
let epsilon: f64 = 0.0000001;
let edge1 = &self.v1 - &self.v0;
let edge2 = &self.v2 - &self.v0;
let h = ray.direction.cross(&edge2);
let a = edge1.dot(&h);
if a > -epsilon && a < epsilon {
return None; // This ray is parallel to the triangle.
}
let f = 1.0 / a;
let s = &ray.origin - &self.v0;
let u = f * s.dot(&h);
if u < 0.0 || u > 1.0 {
return None;
}
let q = s.cross(&edge1);
let v = f * ray.direction.dot(&q);
if v < 0.0 || u + v > 1.0 {
return None;
}
// At this point, we can compute the point of intersection.
let t = f * edge2.dot(&q);
if t < t_min || t > t_max {
return None;
}
let mut hit_record = HitRecord::new();
hit_record.u = u;
hit_record.v = v;
hit_record.t = t;
hit_record.p = ray.at(t);
// TODO: i don't love this, but it allows for custom surface normals from OBJ data.
if let Some(normal) = &self.custom_normal {
hit_record.set_face_normal(ray, &normal);
} else {
let outward_normal = edge2.cross(&edge1).unit_vector();
hit_record.set_face_normal(ray, &outward_normal);
}
hit_record.material = Some(self.material.clone());
Some(hit_record)
}
fn bounding_box(&self, _: f64, _: f64) -> Option<AABB> {
match self.has_vertex_at_infinity() {
true => None,
false => Some(AABB {
minimum: Point3 {
x: self.v0.x.min(self.v1.x).min(self.v2.x) - 0.0001,
y: self.v0.y.min(self.v1.y).min(self.v2.y) - 0.0001,
z: self.v0.z.min(self.v1.z).min(self.v2.z) - 0.0001,
},
maximum: Point3 {
x: self.v0.x.max(self.v1.x).max(self.v2.x) + 0.0001,
y: self.v0.y.max(self.v1.y).max(self.v2.y) + 0.0001,
z: self.v0.z.max(self.v1.z).max(self.v2.z) + 0.0001,
},
}),
}
}
}
|