aboutsummaryrefslogtreecommitdiff
path: root/src/main.rs
blob: 1e889e6040d233f78d24d365e6131e3386b18ab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
mod camera;
mod display;
mod hittable;
mod material;
mod ray;
mod scenes;
mod texture;
mod util;
mod vec3;

use std::{
    sync::{mpsc, Arc},
    thread,
};

use camera::Camera;
use display::{Display, Image, Pixelflut};
use hittable::Hittable;
use ray::Ray;
use scenes::get_scene;
use vec3::{Color, Vec3};

struct PixelUpdate {
    color: Color,
    x: usize,
    y: usize,
}

fn ray_color(ray: &Ray, background: &Color, world: &dyn Hittable, depth: u32) -> Color {
    if depth <= 0 {
        return Color {
            x: 0.0,
            y: 0.0,
            z: 0.0,
        };
    }
    match world.hit(ray, 0.001, f64::INFINITY) {
        None => background.clone(),
        Some(rec) => {
            let mut scattered = Ray::new();
            let mut attenuation = Color::new();
            if let Some(material) = &rec.material {
                let emitted = material.emitted(rec.u, rec.v, &rec.p);
                if !material.scatter(&ray, &rec, &mut attenuation, &mut scattered) {
                    emitted
                } else {
                    emitted + attenuation * ray_color(&scattered, background, world, depth - 1)
                }
            } else {
                Color {
                    x: 0.0,
                    y: 0.0,
                    z: 0.0,
                }
            }
        }
    }
}

fn render(
    image_width: u32,
    image_height: u32,
    samples_per_pixel: u32,
    max_depth: u32,
    world: Arc<dyn Hittable>,
    background: Color,
    camera: Arc<Camera>,
    tx: mpsc::Sender<PixelUpdate>,
) {
    for j in (0..image_height).rev() {
        for i in 0..image_width {
            for _ in 0..samples_per_pixel {
                let u = ((i as f64) + rand::random::<f64>()) / ((image_width - 1) as f64);
                let v = ((j as f64) + rand::random::<f64>()) / ((image_height - 1) as f64);
                let ray = camera.get_ray(u, v);

                tx.send(PixelUpdate {
                    color: ray_color(&ray, &background, world.as_ref(), max_depth),
                    x: i as usize,
                    y: j as usize,
                })
                .unwrap();
            }
        }
    }
}

fn main() {
    // Image
    const ASPECT_RATIO: f64 = 16.0 / 9.0;
    //const ASPECT_RATIO: f64 = 1.0;
    const IMAGE_WIDTH: u32 = 600;
    const IMAGE_HEIGHT: u32 = (IMAGE_WIDTH as f64 / ASPECT_RATIO) as u32;
    const SAMPLES_PER_PIXEL: u32 = 30;
    const MAX_DEPTH: u32 = 50;
    const THREAD_COUNT: u32 = 8;
    const TIME_START: f64 = 0.0;
    const TIME_END: f64 = 1.0;
    // World
    let (world, lookfrom, lookat, vfov, aperture, background) = get_scene(
        std::env::args()
            .nth(1)
            .unwrap_or("0".to_string())
            .trim()
            .parse()
            .unwrap_or(0),
    );

    // Camera
    let vup = Vec3 {
        x: 0.0,
        y: 1.0,
        z: 0.0,
    };
    let dist_to_focus = 10.0;
    let cam = Arc::new(Camera::new(
        lookfrom,
        lookat,
        vup,
        vfov,
        ASPECT_RATIO,
        aperture,
        dist_to_focus,
        TIME_START,
        TIME_END,
    ));
    // Render
    // let mut final_image = Image::new(IMAGE_WIDTH as usize, IMAGE_HEIGHT as usize);
    let mut final_image = Pixelflut::new(
        "192.168.0.38:1337",
        0,
        0,
        IMAGE_WIDTH as usize,
        IMAGE_HEIGHT as usize,
    );
    let (tx, rx) = mpsc::channel::<PixelUpdate>();
    for _ in 0..THREAD_COUNT {
        let sender = tx.clone();
        let world_ref = world.clone();
        let camera_ref = cam.clone();
        let background_clone = background.clone();
        thread::spawn(|| {
            render(
                IMAGE_WIDTH,
                IMAGE_HEIGHT,
                SAMPLES_PER_PIXEL / THREAD_COUNT,
                MAX_DEPTH,
                world_ref,
                background_clone,
                camera_ref,
                sender,
            );
        });
    }
    let expected_updates: u64 = (SAMPLES_PER_PIXEL / THREAD_COUNT) as u64
        * THREAD_COUNT as u64
        * IMAGE_HEIGHT as u64
        * IMAGE_WIDTH as u64;
    let print_frequency: u64 =
        (SAMPLES_PER_PIXEL / THREAD_COUNT) as u64 * THREAD_COUNT as u64 * IMAGE_WIDTH as u64;
    let print_frequency = print_frequency * 3;
    let mut update_count: u64 = 0;
    loop {
        if let Ok(update) = rx.try_recv() {
            update_count += 1;
            final_image.add_sample(update.x, update.y, update.color);
            if update_count % print_frequency == 0 {
                final_image.maybe_update();
                eprint!(
                    "\rCurrent completion: {:.2}%",
                    (update_count as f64 / expected_updates as f64) * 100.0
                )
            }
        } else {
            if Arc::strong_count(&world) == 1 {
                break;
            }
        }
    }
    final_image.maybe_update();
    final_image.maybe_write(&mut std::io::stdout());
    eprintln!("\nDone.");
}