1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#version 410 core
uniform vec2 u_resolution;
uniform float u_time;
uniform vec3 u_camera_location;
uniform vec3 u_camera_lookat;
uniform vec3 u_camera_vup;
#define SAMPLES 20
#define MAX_BOUNCE_DEPTH 20
const float inf = 1.0 / 0.0;
float rand_seed = u_time;
// https://stackoverflow.com/a/4275343
float rand() {
rand_seed += 0.1;
return fract(sin(dot(vec2(length(gl_FragCoord), rand_seed), vec2(12.9898, 78.233))) * 43758.5453);
}
float rand(float min, float max) {
return min + (max - min) * rand();
}
vec3 rand_vec3() {
return vec3(rand(), rand(), rand());
}
vec3 rand_vec3(float min, float max) {
return vec3(rand(min, max), rand(min, max), rand(min, max));
}
vec3 random_in_unit_sphere() {
while (true) {
vec3 p = rand_vec3(-1.0, 1.0);
if (length(p) >= 1)
return p;
}
}
vec3 random_unit_vector() {
return normalize(random_in_unit_sphere());
}
struct Ray {
vec3 origin;
vec3 direction;
};
vec3 ray_at(Ray ray, float t) {
return ray.origin + t * ray.direction;
}
#define MATERIAL_DIFFUSE 0
#define MATERIAL_METAL 1
#define MATERIAL_DIELECTRIC 2
struct Material {
int type;
vec3 albedo;
float metal_fuzz_or_dielectric_eta;
};
struct ScatterResult {
bool did_scatter;
vec3 attenuation;
Ray scattered;
};
struct HitRecord {
bool did_hit;
vec3 point;
vec3 normal;
float t;
bool front_face;
Material material;
};
HitRecord null_record() {
return HitRecord(false, vec3(0.0), vec3(0.0), 0.0, false, Material(-1, vec3(0.0), 0.0));
}
void hit_record_set_face_normal(inout HitRecord rec, Ray ray) {
rec.front_face = dot(ray.direction, rec.normal) < 0;
rec.normal = rec.front_face ? rec.normal : -rec.normal;
}
ScatterResult material_diffuse_scatter(HitRecord rec) {
vec3 direction = rec.normal + random_unit_vector();
if (direction != direction) {
// catch NaNs
direction = rec.normal;
}
return ScatterResult(true, rec.material.albedo, Ray(rec.point, direction));
}
ScatterResult material_metal_scatter(Ray in_ray, HitRecord rec) {
vec3 scattered = reflect(normalize(in_ray.direction), rec.normal) + rec.material.metal_fuzz_or_dielectric_eta * random_in_unit_sphere();
if (dot(scattered, rec.normal) > 0) {
return ScatterResult(true, rec.material.albedo, Ray(rec.point, scattered));
} else {
return ScatterResult(false, vec3(0.0), Ray(vec3(0.0), vec3(0.0)));
}
}
float reflectance(float cosine, float ref_idx) {
float r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
r0 = r0 * r0;
return r0 + (1.0 - r0) * pow((1.0 - cosine), 5);
}
ScatterResult material_dielectric_scatter(Ray in_ray, HitRecord rec) {
float refraction_ratio = rec.front_face ? 1.0 / rec.material.metal_fuzz_or_dielectric_eta : rec.material.metal_fuzz_or_dielectric_eta;
vec3 unit_direction = normalize(in_ray.direction);
float cos_theta = min(dot(-unit_direction, rec.normal), 1.0);
float sin_theta = sqrt(1.0 - cos_theta * cos_theta);
vec3 direction;
if ((refraction_ratio * sin_theta > 1.0) || (reflectance(cos_theta, refraction_ratio) > rand())) {
direction = reflect(unit_direction, rec.normal);
} else {
direction = refract(unit_direction, rec.normal, refraction_ratio);
}
return ScatterResult(true, rec.material.albedo, Ray(rec.point, direction));
}
struct Sphere {
vec3 center;
float radius;
Material material;
};
HitRecord hit_sphere(Sphere sphere, float t_min, float t_max, Ray ray) {
vec3 oc = ray.origin - sphere.center;
float a = pow(length(ray.direction), 2);
float half_b = dot(oc, ray.direction);
float c = pow(length(oc), 2) - sphere.radius * sphere.radius;
float discriminant = half_b * half_b - a * c;
if (discriminant < 0.0) {
return null_record();
}
float sqrtd = sqrt(discriminant);
float root = (-half_b - sqrtd) / a;
if (root < t_min || root > t_max) {
root = (-half_b + sqrtd) / a;
if (root < t_min || root > t_max) {
return null_record();
}
}
vec3 p = ray_at(ray, root);
vec3 outward_normal = (p - sphere.center) / sphere.radius;
HitRecord rec = HitRecord(true, p, outward_normal, root, false, sphere.material);
hit_record_set_face_normal(rec, ray);
return rec;
}
#define SPHERES 5
const Sphere world[SPHERES] = Sphere[SPHERES] (
Sphere(vec3(0.0, 0.0, -1.0), 0.5, Material(MATERIAL_DIFFUSE, vec3(0.7, 0.3, 0.3), 0.0)),
Sphere(vec3(-1.1, 0.0, -1.0), 0.5, Material(MATERIAL_DIELECTRIC, vec3(1.0), 1.5)),
Sphere(vec3(1.1, 0.0, -1.0), 0.5, Material(MATERIAL_METAL, vec3(0.7, 0.6, 0.5), 0.0)),
Sphere(vec3(0.0, 0.0, -2.1), 0.5, Material(MATERIAL_METAL, vec3(0.8, 0.8, 0.8), 0.5)),
Sphere(vec3(0.0, -100.5, -1.0), 100, Material(MATERIAL_DIFFUSE, vec3(0.8, 0.8, 0.0), 0.0))
);
HitRecord hit_world(float t_min, float t_max, Ray ray) {
HitRecord temp_rec;
HitRecord rec;
bool hit_anything = false;
float closest_so_far = t_max;
for (int i = 0; i < SPHERES; i++) {
temp_rec = hit_sphere(world[i], t_min, closest_so_far, ray);
if (temp_rec.did_hit) {
hit_anything = true;
closest_so_far = temp_rec.t;
rec = temp_rec;
}
}
if (hit_anything) {
return rec;
} else {
return null_record();
}
}
vec3 sky_color(vec3 ray_direction) {
vec3 unit_direction = normalize(ray_direction);
float t = 0.5 * (unit_direction.y + 1.0);
return vec3(1.0 - t) * vec3(1.0) + vec3(t) * vec3(0.5, 0.7, 1.0);
}
vec3 ray_color(Ray ray) {
Ray target = ray;
vec3 accumulator = vec3(1.0);
for (int i = 0; i < MAX_BOUNCE_DEPTH; i++) {
HitRecord rec = hit_world(0.001, inf, target);
if (!rec.did_hit) {
accumulator *= sky_color(target.direction);
break;
}
ScatterResult scattered;
switch (rec.material.type) {
case MATERIAL_DIFFUSE:
scattered = material_diffuse_scatter(rec);
break;
case MATERIAL_METAL:
scattered = material_metal_scatter(target, rec);
break;
case MATERIAL_DIELECTRIC:
scattered = material_dielectric_scatter(target, rec);
break;
}
if (scattered.did_scatter) {
accumulator *= scattered.attenuation;
} else {
accumulator = vec3(0.0);
break;
}
target = scattered.scattered;
}
return accumulator;
}
void main() {
float aspect_ratio = u_resolution.x / u_resolution.y;
float viewport_height = 2.0;
float viewport_width = viewport_height * aspect_ratio;
vec3 origin = u_camera_location;
vec3 w = normalize(origin - u_camera_lookat);
vec3 u = normalize(cross(u_camera_vup, w));
vec3 v = cross(w, u);
vec3 horizontal = viewport_width * u;
vec3 vertical = viewport_height * v;
vec3 lower_left_corner = origin - horizontal/2 - vertical/2 - w;
vec3 color = vec3(0.0);
for (int i = 0; i < SAMPLES; i++) {
vec2 st = (gl_FragCoord.xy + vec2(rand(), rand())) / u_resolution;
Ray r = Ray(origin, lower_left_corner + st.x * horizontal + st.y * vertical - origin);
color += ray_color(r);
}
gl_FragColor = vec4(sqrt(color / vec3(SAMPLES)), 1.0f);
}
|